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We propose a sequence-to-sequence (Seq2Seq) framework
integrated with a feature decouple distributed (FDD)
method for fast and accurate channel waveform modeling in
multi-channel, high-rate wavelength-division multiplexing
(WDM) optical fiber transmission. This framework enables
the simultaneous prediction of multiple output symbols
in a single inference, dramatically reducing the repeated
calculation of adjacent padding symbols and achieving a
significant reduction in time complexity compared to the
traditional split-step Fourier method (SSFM). Additionally,
transfer learning is leveraged to streamline the training pro-
cess and improve the accuracy of the Seq2Seq architecture.
In a 40-channel, 140 GBaud WDM system, Seq2Seq-FDD
reduces computation time to a mere 0.22% of that required
by the variable step size SSFM. In a five-channel config-
uration, Seq2Seq-FDD achieves an 85.5% improvement in
NMSE over simplified FDD-Co-LSTM and a 99.88% reduc-
tion in computation time compared to vanilla-FDD. This
framework provides a highly efficient solution for waveform
modeling in multi-channel, high-rate WDM systems. ©
2025 Optica Publishing Group. All rights, including for text and data
mining (TDM), Artificial Intelligence (AI) training, and similar tech-
nologies, are reserved.
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Introduction. Optical fiber communication forms the backbone
of modern information transmission systems. Fast and accurate
modeling and simulation of optical fiber channels are pivotal in
optimizing optical networks [1], advancing digital signal pro-
cessing (DSP) algorithms [2], and performing end-to-end (E2E)
optimization [3].

The evolution of optical pulses within fiber channels is
governed by the nonlinear Schrödinger equation (NLSE) [4].
Gaussian noise (GN) [5] and enhanced GN (EGN) [6] mod-
els offer fast channel modeling by focusing on power-level
results and accurately estimating the generalized signal-to-noise
ratio (GSNR). However, the GN-like models fail to provide
waveform information, limited waveform-level application such
as advancing DSP algorithms. The split-step Fourier method

(SSFM) [4] provides accurate waveform results by solving
linear and nonlinear operators separately in each small fiber
segment. While SSFM is effective, it incurs significant itera-
tive computation, particularly in multi-channel and high-rate
wavelength-division multiplexing (WDM) systems [7].

Recently, deep learning (DL) has emerged as a promising
approach for optical fiber channel waveform modeling [8–15],
owing to its superior nonlinear fitting capabilities and effi-
cient parallel computation. Innovations such as bidirectional
long short-term memory (Bi-LSTM) [8], generative adversar-
ial network (GAN) [9], multi-head attention [10] and Fourier
neural operator (FNO) [11] have been applied to signal-channel
systems. Additionally, Bi-LSTM combined with feature decou-
pled distributed (vanilla-FDD) [12], and deep operator network
(DeepONet) [13] have been extended to multi-channel wave-
form modeling. The simplified center-oriented LSTM integrated
with FDD (FDD-Co-LSTM) [14] further reduced the complex-
ity. Despite these advancements, DL-based fiber modeling that
simultaneously achieve high accuracy and low complexity in
multi-channel, high-rate WDM systems remains a challenge
[16], particularly due to stronger linear effects, which lead to
exponentially growing inter-symbol interference (ISI). While
the FDD employs a physical model to address linear effects,
the residual nonlinear inter-symbol correlations remain long, as
linear and nonlinear effects occur simultaneously and interact
within the fiber channel.

In this Letter, we introduce a sequence-to-sequence (Seq2Seq)
framework combined with an FDD method to achieve fast and
accurate fiber channel waveform modeling under multi-channel,
high-rate WDM systems. This framework employs a multiple-
symbol output approach per inference, significantly reducing the
repeated calculation compared to single-symbol predictions per
inference. Transfer learning is employed to streamline the train-
ing process of the Bi-LSTM with hundreds of cells, enhancing
both efficiency and accuracy of the Seq2Seq. In a 40-channel
140 GBaud system, the computation time of Seq2Seq-FDD is
reduced to just 0.22% of that required by variable step size
SSFM. Furthermore, in a five-channel case, Seq2Seq-FDD
achieves an 85.5% improvement in NMSE over simplified
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Fig. 1. (a) The structure and parameters of optical fiber transmission WDM simulation systems and feature decoupled distributed schemes.
(b) The structure of Bi-LSTM employed in vanilla-FDD and Seq2Seq-FDD. (c) The processing of transfer learning to implement Seq2Seq
framework.

FDD-Co-LSTM and a 99.88% reduction in computation time
compared to vanilla-FDD.

Principle. Fiber channel modeling, governed by the NLSE
[4], involves both linear and nonlinear operators. The linear
effects lead to long ISI and nonlinear inter-symbol correlations,
particularly in multi-channel and high-rate systems, necessi-
tating the consideration of preceding and subsequent symbols’
influence on the current symbols during fiber channel modeling.
Seq2Seq-FDD is proposed to enhance the accuracy and reduce
the complexity, as shown in Figs. 1(a) and 1(b). FDD com-
bines a physical model and a Bi-LSTM to model single-span
optical fiber channel, with the physical model addressing lin-
ear effects and the Bi-LSTM capturing nonlinear effects. ASE
noise introduced by erbium-doped fiber amplifier (EDFA) is
added based on Gaussian distributions. To achieve long-haul
transmission, multiple FDD modules are cascaded. To account
for nonlinear inter-symbols correlations, the input window of
the Bi-LSTM comprises 2 m+ k symbols, where k central sym-
bols are predicted, and m preceding and subsequent symbols
provide adjacent nonlinear information. In vanilla-FDD, k is
set to 1, while 2 m symbols are padding symbols, resulting
in a significant repeated computation. For a transmitted sig-
nal with N symbols, vanilla-FDD requires N cycles to predict
the entire signal, leading to high computational complexity.
To overcome this limitation, the Seq2Seq framework adopts a
multiple-symbol input and multiple-symbol output approach.
Specifically, the number of central symbols k is set to sev-
eral thousands (much larger than m), enabling the prediction of
thousands of symbols. This drastically reduces repeated com-
putation to a ratio of 2 m/k, far lower than the 2 m ratio in
vanilla-FDD. The simplified FDD-Co-LSTM introduced this
multiple-symbol output method to mitigate high computational
complexity. However, FDD-Co-LSTM applies this approach
only during inference, while the training process employs a
single-symbol output approach, potentially causing parameter

mismatch and degrading the accuracy of nonlinear modeling
during multi-symbol output. The Bi-LSTM in the multiple-
symbol output method contains thousands of LSTM cells,
which pose challenges due to excessive dataset sizes and sig-
nificant computational resource requirement to directly train
such large-scale models. The Seq2Seq framework combined
with transfer learning overcomes this challenge through a two-
stage training process, as depicted in Fig. 1(c). In the first stage,
a small-scale Bi-LSTM with small k and m values (both set
to 20 in this study) is trained to capture the dominant non-
linear effects from most adjacent symbols while minimizing
training resource usage. In the second stage, the small-scale
Bi-LSTM is fine-tuned into a large-scale Bi-LSTM, where k is
set to hundreds or thousands, allowing the model to capture
residual nonlinearities from distant symbols. Transfer learn-
ing facilitates this process, allowing the model to effectively
learn the influence of nearby symbols while still account-
ing for the effects of more distant ones, thereby enhancing
accuracy.

We construct an SSFM-based optical fiber transmission sim-
ulation system to generate the dataset, with its structure and
parameters illustrated in Fig. 1(a). The sampling rate in SSFM
is four times the channel number. The step size of the SSFM is
determined using a maximum nonlinear phase rotation method
to balance accuracy and complexity, which is referred to as NP-
SSFM. The constant step SSFM is called C-SSFM. The data
collection and preprocessing process follows the design outlined
in [15], with additional details of the model training provided in
Supplement 1.

Results. To demonstrate the efficiency of transfer learning in
implementing Seq2Seq-FDD, Fig. 2 shows the loss curves for
the two-stage training process. In the first stage, the small-scale
model requires more iterations to learn the primary nonlinear
influence. Building upon this foundation, the model in the sec-
ond stage effectively captures the residual nonlinear effects from
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Fig. 2. Loss curves for two-stage training processing.

Fig. 3. (a) Computational complexity as a function of channel
number. The left axis represents the absolute time changes, while
the left axis shows the time percent of Seq2Seq-FDD relative to NP-
SSFM. (b) GSRN versus distances and constellations of Seq2Seq-
FDD and NP-SSFM.

distinct symbols with only 4.5% of the iterations required in the
first stage, significantly reducing training resource consumption.

The computational complexity of Seq2Seq-FDD is distinctly
demonstrated in comparison to SSFM. A signal with 106

symbols per channel is transmitted over an 80 km span. The
computational complexity is shown in Fig. 3(a). In a five-channel
WDM configuration, Seq2Seq-FDD achieves a computation
time of just 0.66 s, compared to 145 s for NP-SSFM, and
1265 s for C-SSFM, representing nearly 200-fold and 2000-
fold speedups over NP-SSFM and C-SSFM, respectively. The
computational time advantage of Seq2Seq-FDD becomes even
more pronounced in larger-channel configurations. The time
percent of Seq2Seq-FDD relative to NP-SSFM achieves approx-
imately 0.22% of NP-SSFM in a 40-channel configuration.
These results underscore the significant reduction in compu-
tational complexity achieved by Seq2Seq-FDD compared with
SSFM. We further evaluate the accuracy of Seq2Seq-FDD com-
pared to SSFM. Figure 3(b) illustrates the GSNR curves and
constellations for Seq2Seq-FDD and SSFM. The GSNR of both
models remains nearly identical, and their constellations display
comparable nonlinear phase rotations, validating the nonlin-
ear modeling with high accuracy of Seq2Seq-FDD relative to
SSFM.

To validate the waveform modeling capacity of Seq2Seq-
FDD, the NMSE is calculated using Eq. (1), where Ndata is
the size of the data, y and yi denote the outputs from SSFM
and DL-based channel. We evaluate NMSE in a five-channel
140 GBaud WDM configuration, with each channel containing

Fig. 4. (a) NMSE of Seq2Seq-FDD versus symbols at different
positions. (b) NMSE of Seq2Seq-FDD versus distances of various
central symbol numbers k. (c) NMSE of simplified FDD-Co-LSTM
versus distances of various central symbol numbers k.

2.5× 105 symbols as follows:

NMSE =
∑︁Ndata

i−1 |ŷi − yi |
2∑︁Ndata

i−1 |yi |
2 . (1)

Figure 4(a) displays the NMSE for output symbols across all
positions when m= 0 and k= 1000, meaning no padding sym-
bols. Central symbols achieve significantly lower NMSE, while
approximately 200 preceding and succeeding symbols exhibit
NMSE degradation due to insufficient adjacent symbols to cap-
ture nonlinear inter-symbol correlations effectively. The ISI
caused by CD is roughly 570 preceding and succeeding sym-
bols, indicating that FDD reduces the dependency on adjacent
symbols by decoupling linear effects. To ensure accuracy, 400
padding symbols are required during testing in this Letter. We
denote that the number of central symbols k in Seq2Seq-FDD
is highly flexible and not constrained by the training dataset.
Figures 4(b) and 4(c) show NMSE curves of Seq2Seq-FDD
and FDD-Co-LSTM with various values of k across 1200 km
transmission. The NMSE of Seq2Seq-FDD remains stable as k
increases, even though the model is trained with k= 600. Con-
versely, the NMSE of FDD-Co-LSTM deteriorates with larger k,
reflecting its inability to handle multiple-symbol outputs effec-
tively. This deficiency stems from FDD-Co-LSTM being trained
exclusively for k= 1, leading to parameter mismatches when k
increases during inference. In contrast, Seq2Seq-FDD, trained
with k in the hundreds, leverages the Bi-LSTM’s memory and
forget gate mechanisms to adapt seamlessly to multiple-symbols
output. This enables flexible extension to larger k values while
maintaining accuracy and reducing the complexity.

To further assess the advantages of Seq2Seq-FDD, we com-
pare it to vanilla-FDD [12] and simplified FDD-Co-LSTM [14],
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Fig. 5. (a) NMSE versus distances of Seq2Seq-FDD, vanilla-
FDD and simplified FDD-Co-LSTM. (b) NMSE versus various
transmission powers of Seq2Seq-FDD, vanilla-FDD, and simplified
FDD-Co-LSTM after a 1200 km transmission.

Table 1. Times of Various DL Models

Seq2Seq-
FDD

Vanilla-
FDD

Simplified
FDD-Co-LSTM

NP-SSFM

Times (s) 0.66 120 0.96 145

trained with k= 1 and k= 200 and tested with k= 200. Fig-
ure 5(a) shows the NMSE curves for all models across a 1200 km
transmission. At the 1200 km transmission, Seq2Seq-FDD
achieves an NMSE of 3.7E-3, outperforming both vanilla-FDD
and simplified FDD-Co-LSTM. Figure 5(b) shows the NMSE
versus different launch powers after the 1200 km transmission,
where Seq2Seq-FDD consistently achieves the lowest NMSE
across various transmission powers, demonstrating its adaptabil-
ity to different levels of nonlinearity. Simplified FDD-Co-LSTM
trained with k= 1 suffers a degradation in accuracy due to param-
eter mismatches between training and testing. Both simplified
FDD-Co-LSTM trained with k= 200 and vanilla-FDD employ a
one-stage training process, which struggles to capture the nonlin-
ear effects effectively due to the challenges of training large-scale
models. In contrast, Seq2Seq-FDD utilizes a two-stage training
approach, where the small-scale model in the first stage cap-
tures nearby nonlinear features effectively, and fine-tuning in
the second stage improves results by better capturing distant
nonlinear effects. Furthermore, Seq2Seq-FDD still maintains
high accuracy across other symbol rates, as detailed in Supple-
ment 1. Table 1 shows the computation times of three DL models
over an 80 km transmission. Seq2Seq-FDD achieves the lowest
computation time of just 0.66 s, demonstrating its efficiency in
reducing computational complexity and addressing the extended
ISI challenge through its multiple-symbol output design.

The advantage of Seq2Seq-FDD underlines its strong ability
to model complex fiber channel’s properties. We speculate that
it is suitable for modeling not only wideband simulation systems
but also for other optical systems governed by the NLSE, such
as physical experimental system modeling [17] and ultrafast
nonlinear dynamics prediction [18].

Conclusion. We propose a Seq2Seq framework combined
with the FDD method for fast and accurate fiber channel
waveform modeling. In a five-channel WDM configuration,
Seq2Seq-FDD achieves an 85.5% improvement in NMSE over
simplified FDD-Co-LSTM and a 99.88% reduction in compu-
tation time compared to vanilla-FDD. We believe this work
paves the way for broader application of DL-based optical fiber
channel waveform modeling.
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