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Abstract: Conventional iterative numerical modeling of chirped pulse amplification (CPA)
systems requires a large temporal simulation window to accommodate the heavily chirped pulses.
Simultaneously, maintaining the high temporal resolution certainly improves the computational
complexity, posing challenges for CPA system design and optimization based on numerical
simulations. To overcome this limitation, we propose a cascaded long-short-term memory
(LSTM) model with a downsampling strategy trained for efficient and accurate modeling of
a multi-stage optical fiber system. This approach delivers full-field simulation of the heavily
chirped pulse with 10-nm spectral bandwidth at the pulse energy reaching 14.9 uJ. Through
aggressive downsampling in the time domain, the proposed framework reduces the computational
complexity by 929 times and achieves a remarkable 1,564-fold speedup compared to conventional
numerical simulations, while maintaining prediction errors of the pulse energy and duration below
2%. Our work provides an efficient and high-fidelity CPA systems modeling alternative, which
is particularly suitable for the inverse design and optimization of CPA systems for high-energy
short pulses generation.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

High-energy femtosecond pulses generated in CPA systems play a critical role in diverse fields [1],
ranging from precision industrial manufacturing [2,3], biotechnology [4,5], and metrology [6,7].
In CPA systems, optimizing the output quality requires a thorough understanding of the dynamics
of high-energy femtosecond pulses [8], which can be studied through numerical simulations.
Conventional modeling of CPA systems relies on the iterative numerical approach solving
the nonlinear Schrodinger equation (NLSE) and the rate equations (REs). The computational
inefficiency of numerical simulations hinders the inverse design and optimization of CPA systems
[9,10]. In laser optics, artificial intelligence (AI) has emerged as a powerful tool for modeling
and optimizing. The propagation of high-order solitons and supercontinuum generation in
fibers is accurately simulated with an LSTM model, achieving a speedup of several orders of
magnitude compared to the conventional split-step Fourier method (SSFM) [11]. Subsequently,
an LSTM-based approach was proposed to enable fast, accurate, and full-field modeling of
mode-locked fiber lasers [12]. Further, Al is applied in designing and optimizing photonic crystal
structures by building up a multi-level abstraction of massive data [13,14].

However, applying Al to model CPA systems still presents significant challenges. Compared
to the nonlinear dynamics in passive fiber, the evolution dynamics in CPA are more complex due
to the deeply involved interplay among gain, dispersion, and nonlinearities. Meanwhile, due to
the large prior dispersion introduced by the stretcher, a ns-level temporal simulation window is
necessary to prevent overlap, and a femtosecond-level temporal resolution is required to reveal

#584849 https://doi.org/10.1364/OE.584849
Journal © 2025 Received 14 Nov 2025; revised 30 Nov 2025; accepted 1 Dec 2025; published 9 Dec 2025


https://orcid.org/0000-0002-6168-2688
https://orcid.org/0000-0002-6039-9063
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.584849&amp;domain=pdf&amp;date_stamp=2025-12-09

Research Article Vol. 33, No. 25/15 Dec 2025/ Optics Express 53155 |
Optics EXPRESS A N \

the detailed characteristics of pulses before stretching and after compression. Therefore, the
number of sampling points of the simulation can be quite large. Both spatial and temporal
complexity of the simulation scales as the dispersion of the stretcher becomes larger, and our
previous studies circumvent the problem. For instance, we built an LSTM model to simulate a
CPA system with a 300 ps time window and a 200 fs resolution, achieving an output with merely
400 nJ energy and 266 fs pulse duration [15]. For modeling CPA systems with output energy
above the microjoule level, the number of sampling points must be increased to accommodate
spectral broadening induced by strong nonlinear effects. Under such circumstances, the vanilla
LSTM model is no longer applicable, as the large input time series leads to insufficient GPU
memory. Consequently, an end-to-end model solved this problem by only modeling the pulse
before the stretcher and after the compressor, which reduced the temporal window from 4 ns to
2 ps and enabled the simulation of CPA systems with a high temporal resolution of 20 fs [14].
However, the end-to-end model fails to manifest the evolution dynamics of pulses in gain fibers,
functioning essentially as a complete “black box™.

To address the aforementioned problem, we propose a cascaded LSTM model with the temporal
downsampling strategy to reduce the computational complexity of CPA systems modeling. By
separately downsampling the pulse amplitude and unwrapped phase, the redundancy in temporal
resolution is reduced while ensuring ultra-high precision recovery. We validate the proposed
method in simulating a 3-stage CPA system with the temporal simulation window beyond 1 ns
and the temporal resolution of 30 fs. Simulation results indicate that the cascaded LSTM model
with a downsampling strategy resolves the issue of insufficient memory, and the speedup can
reach up to 1,564 times compared to the conventional numerical approach. Additionally, the
grouped parameter optimization (GPO) strategy is employed to reduce prediction errors, resulting
in an overall prediction energy error of less than 2% throughout the entire pulse evolution process.
Learnable parameter encoding is applied to enhance the generalization ability of the model.

2. Principles
2.1. CPA simulation system

We construct a 3-stage amplifier CPA simulation system, with its structure depicted in Fig. 1, and
its critical parameters elaborated in Table 1. Notably, the pulse duration expands to over 300 ps
after the stretching process, whereas after the compression process, the output pulse duration is
approximately 300 fs, and the output energy reaches up to 15 uJ.

2.2. Conventional numerical simulation method

The ultrafast pulse amplification process in the gain fiber involves linear and nonlinear effects,
and photon energy level dynamics, which are described by two physical equations: the NLSE
and the REs [16]. The NLSE is numerically solved using the SSFM, while the fourth-order
Runge-Kutta method (RK4) is employed to solve the REs. The NLSE models the evolution of the
complex electric field envelope of light in a passive fiber [17]. Dispersion and nonlinear effects,
including self-phase modulation, self-steepening, and stimulated Raman scattering, are given by
0A Py 0’A P304 « . i 0 d|A?
FZ+%W_%W+§A =1y |A|2+(D—OE|A|2A—TRAT A. (1)
where A is the optical field envelope, wy is the central angular frequency, z denotes propagation
distance, and t represents time. Parameters S3,, 33, @, and y correspond to the second-order
dispersion, third-order dispersion, loss, and nonlinear coefficient, respectively. Ty relates to the
slope of the Raman gain.
Within the gain fiber, wavelength-dependent gain arises from temporal dynamics of the energy
level population. The REs account for absorption, stimulated emission, and spontaneous emission
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Table 1. Parameters of the components in the 3-stage amplifiers CPA.

Component Property Value
Central wavelength 1030 nm
Duration 3 ps
Seed Energy 4n]
Repetition rate 25 MHz
Bandwidth 8.5nm
CFBG Bandwidth 100 nm
Length 2m
PM Yb-SMF 6/125
Core Absorption 250.0dB/m@975 nm
AOM Output Repetition rate 1 MHz
Length 2m
PM Yb-DCF 14/125
Clad Absorption 16.6 dB/m@976 nm
Length 2m
PM Yb-DCF 20/130
Clad Absorption 10.20dB/m@976 nm
. . Line number 1000
Grating pairs
Angle of incidence 30°

PM-ISO1  PMYb-SMF WDMI
6/125

WDM2 PMYDb-DCF  pMISO2
14/125
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Fig. 1. Schematic setup of 3-stage amplifiers CPA system, including seed, stretcher
amplifiers, and compressor. CFBG, chirped fiber Bragg grating; PM-CIR, polarization
maintaining circulator; LD, laser diode; WDM, wavelength division multiplexer; Yb-
SCF, Ytterbium-doped single-clad fiber; PM-ISO, polarization maintaining isolator; AOM,
acousto-optic modulator; Yb-DCF, Ytterbium-doped double-clad fiber.
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in the quasi-three-level Yb system. These equations describe the steady state of the full dynamics
of the population inversion [18]:

ﬁ Z:le rk/lka—a(/lk)NTP;: (Z)

N = . 2
20 7ot Siet Tedk[ o) + oo (W)PF (2) + £ @
dp*
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z, t, and A represent spatial position, time, and wavelength, respectively. Index k corresponds
to pump and signal components. /4 is Planck’s constant, ¢ is the vacuum speed of light, 7 is
the upper-state lifetime, and N7 is the total dopant density with N;(z,#) and N;(z, ) being the
populations of the lower and upper energy states. P* denotes optical power (+: forward, —:
backward). o, and o, are absorption and emission cross-sections, 'y is the geometric overlap
factor, and A2 is the wavelength resolution.

Early numerical models effectively describe continuous-wave amplification but neglect critical
nonlinear effects and dispersion in ultrafast pulse regimes [19]. Other common workarounds
apply NLSE, assuming wavelength-independent gain, which overlooks spatially and spectrally
varying gain in fiber amplifiers [20,21]. Unlike the separate model fails to capture the dynamic
interplay between gain, dispersion, and non-linearity [22], Lindberg et al. introduce a combined
numerical model integrating with RE and NLSE [16]. As a result, the gain profile calculated from
RE at each fiber position determines subsequent dispersion and nonlinear effects in the NLSE.
The pulse propagation then updates the pulse profile, which in turn influences the subsequent
gain dynamics. The training data is generated using the combined numerical model proposed in
[16] with a simulation time window of 1024 ps and the temporal resolution of ~30 fs, resulting
in 32,768 points per pulse.

2.3. Cascaded LSTM with downsampling strategy

The parameter disparities among various gain fibers constitute the primary factor contributing
to the distinct dynamic evolution of pulses. For instance, variations in doping concentration
dictate vastly different gain dynamics, while fiber radius governs the scale of nonlinear effects.
Consequently, a single unified LSTM model faces challenges in characterizing a multi-stage
optical fiber system, prompting the proposal of a cascaded LSTM. As illustrated in Fig. 2,
each LSTM module with identical model structure is independently trained and optimized.
Because the direct downsampling of complex-field pulses would cause irreversible information
loss, the selection of an optimal downsampling strategy plays a decisive role in enhancing
simulation efficiency for full-field CPA modeling (i.e., outputting the amplitude and phase
simultaneously). The temporal pulse amplitude and unwrapped phase exhibit quasi-parabolic
evolutionary characteristics due to the substantial dispersion introduced by the CFBG causes.
This property enables effective signal recovery through cubic interpolation after independently
down-sampling on temporal amplitude and unwrapped phase. Since the unwrapped phase value
is much greater than the pulse amplitude by orders of magnitude, the initial phase with CFBG
dispersion parameters set to [20 ps?, 0.1 ps®] is used as the phase offset. The phase of the
pulse simulated at each step needs to be subtracted by this phase offset, which means that the
cascaded LSTM model predicts the pulse amplitude and phase variation, enabling it to better
learn fine-grained phase information.
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Fig. 2. The proposed cascaded LSTM for simulating the 3-stage CPA system, where
three identical LSTM models correspond to three different Ytterbium-doped fiber (YDF).
Temporal pulse amplitude, unwrapped phase (after phase offset subtraction), and a prior
vector (from pump power via encoding layers) are concatenated as LSTM input.

The generalization ability of data-driven models is a huge challenge. For ultrafast pulse
propagation, different input conditions lead to different nonlinear evolution maps. Here, the
cascaded LSTM is trained with data generated under different chirp and pump conditions, as
illustrated in Table 2. To enhance the generalization ability of the model, the power of 3-stage
pumps is input into the encoding layers to generate the prior vector. Finally, the temporal
amplitude, unwrapped phase, and the prior vector are concatenated as the input to the LSTM
layers, while the model’s output is the predicted pulse amplitude and phase before compression.

Table 2. System setup under pump powers and chirp
parameters generalization.

Component Parameters Value
CFBG Chirp parameter 3, 18~22 ps?
Chirp parameter 33 0~0.2 ps3
Pumpl Power 1~2W
Pump?2 Power 1~2W
Pump3 Power 25~30 W

2.4. Training of the cascaded LSTM

Each LSTM is independently trained and employed to simulate temporal dynamics within
different ytterbium-doped fiber (YDF), with a fixed sequence length of 20. A dense layer then
consolidates the outputs from the LSTM layers and predicts the next step. During training, the
input sequences are pulses obtained via the SSFM-RK4 method. During inference, the input
sequence operates in a sliding-window manner, and the last step of the 20-step input is replaced
by the previous prediction. Note that for predicting the second pulse, the first 20 steps are all
identical to the initial pulse. Moreover, for the SSFM-RK4 method, a step size of 1 mm is
adopted, with 6000 steps per evolution over three 2-meter YDF. To reduce the inference time, the
simulation steps are downsampled by a factor of 20, reducing the inference steps to 300.
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In deep learning, GPO denotes the requirement for distinct optimization strategies to be applied
to parameters of different network layers. This includes adopting different learning rates for
various parameter groups or employing different optimization algorithms across different layers
according to their different functions [23-26]. Considering the huge functional differences
between encoding layers and LSTM layers, we introduce a GPO method that incorporates
layer-wise statistical gradient norms. We design a two-stage learning rate scheduling strategy: a
warm-up phase where the learning rate increases linearly, and a cosine annealing phase where
the learning rate decays following a cosine function. The warm-up phase prevents unstable
convergence caused by excessively large initial learning rates, enabling the model to gradually
adapt to parameter updates and avoid getting trapped in poor local optima, laying a foundation for
stable convergence in subsequent phases. The mathematical expression of the proposed strategy
is as follows,

LR LRy - £ , 0<k<N )
LRy-s - 0T sy

where LR(k) denotes the learning rate at the current training epoch k, LRy is the target learning
rate at the end of the warm-up phase, N stands for the total number of epochs for the warm-up
phase, T represents the period of the cosine annealing phase. s is the scaling coefficient for
different layers calculated by,

s =logo(1 + 1/(gill2))- (6)

where / is the index of the network layer, and g;, refers to the L, norm of the gradient for the
parameters in different sub-networks, which is calculated at the end of the warm-up stage.

2.5. Evaluation metric

To evaluate the performance of the model, a weighted MSE loss function incorporating both
amplitude and unwrapped phase indicated in Eq. (7) is used during training. During inference,
the model’s performance was assessed by comparing the pulse width and energy along the gain
process with those of the pulse generated by the SSFM-RK4 method.

N
1 0 0 2 @ _ 0 2
Lyvse = N Z[a’ ’ (Aplred - ASISFM—RK4) +p- (¢plred - ¢SlSFM—RK4 . %)
i=1

R = max(|Acompressed§t)|2). (8)
max(|ArL(t)]%)

Furthermore, to evaluate the accuracy of the final recovered pulse, three metrics were adopted:
the compressed output peak power, the full width at half maximum (FWHM), and the Strehl ratio.
The Strehl ratio, as defined in Eq. (8) is defined as the peak-power ratio between the compressed
pulses and the TL pulses [27], which indicates how closely the compressed pulse approaches its
corresponding Fourier transform-limited pulse.

3. Results

To present the prediction accuracy of the cascaded LSTM model, Fig. 3 represents the overall
pulse evolution under the downsampling ratio of 512 (denoted by the symbol r), and the detailed
pulse profile at concatenation points between discrete gain fibers. Figure 3(a) shows the temporal
dynamics of the pulse propagation based on the proposed model, while Fig. 3(b) shows the
intensity and phase of the signal located at fiber-to-fiber coupling points and the end of all
amplifiers. Compared to the simulation results generated by the SSFM-RK4 model, the proposed
model predicts both the temporal amplitude and temporal phase accurately. The spectral full-field
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signal can be obtained by performing the fast Fourier transform (FFT) on the predicted temporal
signal after cubic interpolation. The spectral amplitude and phase also maintain incredible
consistency in Fig. 3(c). Figure 3(d) displays the spectral dynamics of the predicted pulse
propagation obtained by performing FFT on the interpolated temporal pulse evolution dynamics.
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Fig. 3. Simulation results based on the cascaded LSTM under the downsampling ratio
of 512 (a) the temporal dynamics and (d) the spectral dynamics of pulse propagation in
3-stages CPA system; the comparison of the intensity and phase in (b) temporal domain and
(c) spectral domain locating at coupling points and output; (e) pulse energy, duration and
bandwidth error within the whole system, including mean value of errors (denoted by lines)
and error distributions (denoted by color blocks).

To demonstrate the generalization ability of the cascaded LSTM model, Fig. 3(e) shows pulse
energy, duration, and bandwidth error distribution within gain fibers evaluated across various
parameter configurations. The proposed model reveals the great ability of modeling the gain
process with the error of pulse energy and bandwidth remaining below 2.1%, while the error of
duration remains below 0.7%.

To further prove the validity of the cascaded LSTM model, both the interpolated predicted
pulses and the label pulses are compressed with identical grating distances. The amplified pulse
with a duration of 300 ps can be compressed to a pulse with a duration of less than 300 fs, and
the time resolution can be reconstructed from 32 ps to ~30 fs by interpolation. To evaluate the
performance of the compressed pulse, we proposed three metrics, including compressed duration,
peak power, and Strehl ratio. Figure 4(a) demonstrates that the reconstruction error of these
metrics remains below 2% when r is less than 1024, which means the cubic interpolation over
pulses predicted by LSTM can be considered lossless. However, the cubic interpolation cannot
completely restore the information of the pulse when r is 1024. The average reconstruction error
of the predicted compressed duration is 4.90%, and the average errors of the peak power and
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Strehl ratio are both greater than 20%. Figure 4(b) and Fig. 4(c) demonstrate compressed pulse
intensity under different parameter configurations to prove the generalization abilities of cascaded
LSTM models. As a result, when r is less than 1024, the predicted compressed pulses can be
well fitted to the label.
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Fig. 4. (a) Reconstruction error of the compressed pulses predicted by different r; compressed
pulses predicted by different » with (b) CFBG dispersion parameters of [22 psz, 0.0 ps3],
pump powers of [1 W, 1 W, 25 W], (c) CFBG dispersion parameters of [18 psZ, 0.2 ps],
pump powers of [2 W, 2 W, 30 W].

4. Discussion

4.1. Inference time and computational complexity

To investigate the performance dependence of the proposed model on r, 4 separate models
with different rates from 128~1024 are trained and tested. Figure 5(a) and Fig. 5(b) show the
comparison among these models in terms of the simulation time on the identical GPU-based
platforms (GeForce RTX 3090) and CPU-based platforms (Intel Xeon Gold 6146 CPU @
3.20 GHz). With the acceleration of CUDA, the inference time for different cascaded LSTM
models does not exceed 0.36s, and the time required increases slowly as the batch size increases.
On the other hand, the SSFM-RK4 model takes more than 1,500 times longer than LSTM, and
the gap between the two methods widens as the batch size increases. When testing on an identical
AMD-CPU-based platform, the cascaded LSTM models are still over 800 times faster than the
SSFM-RK4 model.

Meanwhile, the number of floating-point operations (FLOPs) and the number of model
parameters are utilized to characterize the computational complexity. Figure 5(c) shows the
computational complexity of the cascaded LSTM model and the SSFM-RK4 model with a batch
size of 50. When downsampled by 512 times, the number of FLOPs of the cascaded LSTM model
is ~929 times less than the conventional SSFM-RK4 model. As r increases, the complexity
decreases approximately linearly. Specifically, when r reaches 512, the FLOPs are reduced to
only 2.81 G.

4.2. Validity of the cascaded LSTM

The parameter differences of various gain fibers are the primary factor leading to the distinct
dynamic evolution of pulses. The core parameters include doping concentration and fiber radius,
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governing the gain profile and the magnitude of nonlinear effects, respectively. To accurately
simulate the pulse dynamics, two distinct training approaches are tested separately: the single
LSTM refers to using a single LSTM to characterize the physical effects in different optical fibers;
correspondingly, training independent LSTM models for different types of fibers is termed the
cascade LSTM.

As shown in Fig. 6, the generalization capability of the single LSTM is insufficient to predict
pulse dynamics among different optical fibers. When inferring, the single LSTM exhibits
extremely high prediction errors. At the end of the second amplification fiber, the maximum error
in pulse energy prediction reaches 298.1%. In contrast, despite the identical model structure
for different fibers in cascade LSTM, merely training them separately significantly improves
prediction accuracy. During the inference phase, the pulse energy prediction error of the cascade
LSTM is always below 2%.

4.3. Validity of the GPO strategy

As proposed in Section 2.4, the GPO strategy calculates the statistical gradient norms of each
sub-network during the warm-up stage to determine the appropriate learning rate for each layer.
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Fig. 6. Pulse energy error of the cascaded LSTM trained with GPO strategy(blue), the single
LSTM trained with GPO strategy(green), and the cascaded LSTM trained without GPO
strategy (red), including the mean value of errors (denoted by lines) and error distributions
(denoted by color blocks).

Specifically, the L, norm of gradients in the LSTM network is found to be an order of magnitude
larger than that in the encoding layer. Therefore, the initial learning rate of the LSTM is set
larger than that of the encoding layers after warming up, to alleviate the gradient vanishing
issue. Figure 6 also compares the prediction error of the pulse energy with different training
strategies. The model trained with a unified learning rate witnesses the highest pulse energy
error at fiber-to-fiber coupling points up to 65.03%, which is the most difficult position to predict.
However, the model trained with the GPO strategy reveals better ability in the inference phase,
with the prediction error remaining below 2.11%.

5. Conclusion

In summary, we present a cascaded LSTM framework with a downsampling strategy for
efficient and accurate full-field simulation of a multi-amplifier CPA system. The proposed
model effectively handles large-bandwidth, heavily chirped, high-energy pulse propagation and
significantly reduces computational cost. Compared to the conventional SSFM-RK4 method,
the proposed method delivers a 1,564-fold speedup and a 929-fold reduction in computational
complexity under the downsampling factor of 512, while maintaining reconstruction errors of
pulse energy and duration below 2% simultaneously. We expect this substantial improvement
in computational efficiency to greatly benefit large-scale parametric studies and optimization
tasks in high-power CPA system design. Furthermore, we believe the proposed architecture and
training strategy can be extended to other ultrafast laser systems and serve as a general-purpose
modeling tool in computational photonics.
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